Imaging Brain Tumor Proliferative Activity with [I]Iododeoxyuridine

نویسندگان

  • Ronald G. Blasberg
  • Ulrich Roelcke
  • Regin Weinreich
  • Bradley Beattie
  • Klaus von Ammon
  • Yasuhiro Yonekawa
  • Hans Landolt
  • Ilonka Guenther
  • Nigel E. A. Crompton
  • Peter Vontobel
  • John Missimer
  • Ralph P. Maguire
  • Jacek Koziorowski
  • E. Joachim Knust
  • Ronald D. Finn
  • Klaus L. Leenders
چکیده

Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0–48 min and 24 h after administration of 28.0–64.4 MBq (0.76–1.74 mCi) of [I]IUdR in 20 patients with brain tumors, including meningiomas and gliomas. The PET images were directly compared with gadolinium contrast-enhanced or T2-weighted magnetic resonance images. Estimates for IUdR-DNA incorporation in tumor tissue (Ki) required pharmacokinetic modeling and fitting of the 0–48 min dynamically acquired data to correct the 24-h image data for residual, nonincorporated radioactivity that did not clear from the tissue during the 24-h period after IUdR injection. Standard uptake values (SUVs) and tumor:brain activity ratios (Tm:Br) were also calculated from the 24-h image data. The Ki, SUV, and Tm/Br values were related to tumor type and grade, tumor labeling index, and survival after the PET scan. The plasma half-life of [I]IUdR was short (2–3 min), and the arterial plasma input function was similar between patients (48 6 12 SUV*min). Plasma clearance of the major radiolabeled metabolite ([I]iodide) varied somewhat between patients and was markedly prolonged in one patient with renal insufficiency. It was apparent from our analysis that a sizable fraction (15–93%) of residual nonincorporated radioactivity (largely [I]iodide) remained in the tumors after the 24-h washout period, and this fraction varied between the different tumor groups. Because the SUV and Tm:Br ratio values reflect both IUdR-DNA incorporated and exchangeable nonincorporated radioactivity, any residual nonincorporated radioactivity will amplify their values and distort their significance and interpretation. This was particularly apparent in the meningioma and glioblastoma multiforme groups of tumors. Mean tumor Ki values ranged between 0.5 6 0.9 (meningiomas) and 3.9 6 2.3 ml/min/g (peak value for glioblastoma multiforme, GBM). Comparable SUV and Tm:Br values at 24 h ranged from 0.13 6 0.03 to 0.29 6 0.19 and from 2.0 6 0.6 to 6.1 6 1.5 for meningiomas and peak GBMs, respectively. Thus, the range of values was much greater for Ki (;8-fold) compared with that for SUV (;2.2-fold) and Tm:Br (;3-fold). The expected relationships between Ki, SUV, and Tm:Br and other measures of tumor proliferation (tumor type and grade, labeling index, and patient survival) were observed. However, greater image specificity and significance of the SUV and Tm:Br values would be obtained by achieving greater washout and clearance of the exchangeable fraction of residual (background) radioactivity in the tumors, i.e., by increased hydration and urinary clearance and possibly by imaging later than 24 h after [I]IUdR administration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary imaging studies of [61Cu]diacetyl-bis (N4-methylthiosemi-carbazone) in normal and hypoxic tumor models

  Introduction: [61Cu]diacetyl-bis(N4-methylthiosemicarbazone) ([61Cu]ATSM) is a well-established hypoxia imaging tracer with simple production and significant specifity. In this work the accumulation of the tracer is studied in wild-type, necrotic and hypoxic fibrosarcoma tumors. Methods: [61Cu]ATSM was prepared u...

متن کامل

Imaging brain tumor proliferative activity with [124I]iododeoxyuridine.

Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [124I]IUdR in 20 patients with brain tumors, including meningiomas and gliomas. The PET images were directly compared with gadolinium contrast-enhanced or T2-weighted magnetic resonance images. Estimates for IUdR-DNA incorpor...

متن کامل

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Blood thymidine level and iododeoxyuridine incorporation and reutilization in DNA in mice given long-acting thymidine pellets.

A long-acting thymidine pellet consisting of 190 mg of cholesterol and 60 mg of thymidine has been developed for the study of thymidine metabolism and reutilization in vivo. Implantation of such a pellet s.c. in adult mice will maintain the blood plasma concentration of thymidine at levels between 40 and 8 X 10(-6) M, which are from 36 to 7 times those of normal mice, for periods up to 48 hr. D...

متن کامل

Comparison of brain SPECT with 99mTc-MIBI and CT-scan in discriminating of radiation necrosis and brain tumor recurrence [Persian]

Introduction: 99mTc-MIBI has been proposed for use as an imaging agent for various tumors, including breast cancer, lung cancer, lymphomas, melanomas and brain neoplastic lesions. Brain tumors are very common and radiotherapy being major part of treatment following surgery. After radiotherapy, deteriorating clinical status can be due to either radiation necrosis or recurrent tumor. Comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000